66 research outputs found

    Hybrid Evolutionary Shape Manipulation for Efficient Hull Form Design Optimisation

    Get PDF
    ‘Eco-friendly shipping’ and fuel efficiency are gaining much attention in the maritime industry due to increasingly stringent environmental regulations and volatile fuel prices. The shape of hull affects the overall performance in efficiency and stability of ships. Despite the advantages of simulation-based design, the application of a formal optimisation process in actual ship design work is limited. A hybrid approach which integrates a morphing technique into a multi-objective genetic algorithm to automate and optimise the hull form design is developed. It is envisioned that the proposed hybrid approach will improve the hydrodynamic performance as well as overall efficiency of the design process

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Evolutionary Computation Automated Design of Ship Hull Forms for the Industry 4.0 Era

    Get PDF
    As the marine industry moves towards the industry 4.0 era, the role of automated smart design is becoming increasingly significant. This offers an ability to produce highly customisable design and to integrate with the product-lifecycle process such as digitalised ship production and ship operations to in an efficient process. Currently, the hull form optimisation process is performed manually using `trial-and-error' approach, which is not efficient. Focusing on automated smart design, this paper introduces a hybrid evolutionary algorithm and morphing (HEAM). It works by mapping the entire hull form (phenotype) into a chromosome (genotype), which allows global shape modification using a novel 2D morphing method. By combining this 2D morphing and Genetic Algorithm (GA), it enables optimal hull designs to be produced more rapidly with no user intervention

    Preliminary assessment of Polytrichum commune extract as an antimicrobial soap ingredient

    Get PDF
    Mosses have long been used in traditional Chinese medicine due to the presence of secondary metabolites which have shown high biological activities. In particular, these secondary metabolites have demonstrated effective antibacterial activity against pathogenic microorganisms. In this study, the influence of different extraction solvents on the antibacterial activities of the Polytrichum commune was carried out using the disc diffusion method. Results showed that both 12.5 mg/mL of methanol moss extract and 6.25 mg/mL of ethanol moss extract were the most effective concentrations against Bacillus cereus and Pseudomonas aeruginosa. Additionally, the P. commune extracts were included as an added ingredient in soap bases to produce antibacterial soap prototypes where the effectiveness of the soaps containing the extracts in removing microorganisms from actual test individuals was carried out. Results of the thumb impression test of test individuals showed that the growth of microbial reduced after washing hands with the usage of both liquid and solid soap with the addition of P. commune extracts. Moreover, the antibacterial soaps performed better in eliminating microorganisms in comparison to control soaps without P. commune extracts. Taken together, P. commune extract could be a good candidate as a value-added ingredient utilized to produce antibacterial soaps due to its antibacterial properties

    Psychosocial Intervention in Response to COVID-19 Pandemic in Sarawak

    Get PDF
    In the wake of the COVID-19 pandemic, the world has been anticipating a greater need for mental health and psychosocial support with the rise in mental health issues when facing many struggles and uncertainties, testing the limits of our current health care system. In this paper, we aim to present a general view of the psychosocial support implemented in Sarawak during the COVID-19 pandemic from the lens of different socio-ecological systems in Sarawak which include the healthcare system, community organizations, and the policy makers. Firstly, this paper provides an overview of the COVID-19 situation in Sarawak in general for the past year. Worth to mention, Sarawak was the first state in Malaysia recorded fatality case resulted from COVID-19 and this inevitably triggered strong negative emotional response during the initial stage of the pandemic. Secondly, the combined efforts initiated by the local state government, the state health departments, several general hospitals and major health clinics were addressed. The delivery of health care service had to be modified according to the strict preventive and social distancing measures recommended by the public health system, including the shift of conventional service to the provision of tele-counselling and psychological first aid. Also, the COVID-19 pandemic and its impact on mental health has brought the politicians’ attention. Lastly, the challenges faced in dealing with the mental health services during the COVID-19 pandemic and the potential paths of the mental health movement were discussed

    Rule-based control studies of LNG-battery hybrid tugboat

    Get PDF
    The use of hybrid energy systems in ships has increased in recent years due to environmental concerns and rising fuel prices. This paper focuses on the development and study of a hybrid energy system using liquefied natural gas (LNG) and batteries for a tugboat. The hybrid system model is created in MATLAB/Simulink® and uses fuel data obtained from an operational diesel-powered tugboat. The LNG–hybrid system is then subjected to testing in four distinct configurations: fixed speed, variable speed, and with and without a battery. The different configurations are compared by computing the daily fuel cost, CO2 emissions, energy efficiency operation indicator () and carbon intensity indicator () ratings in three distinct operation cases. The analysis reveals that the use of an LNG–battery hybrid tugboat results in an average reduction of 67.2% in CO2 emissions and an average decrease of 64.0% in daily fuel cost compared to a diesel system. An energy management system using rule-based (RB) control is incorporated to compare the daily cost and CO2 emissions for one of the case studies. The rule-based control that requires the battery to be used and the LNG engine to be switched off at the lowest allowable minimum power based on the specific gas consumption produces the most cost-effective control strategy out of all the different control strategies tested. The result demonstrates that an additional reduction of CO2 and daily fuel cost for LNG–battery hybrid tugboats by 23.8% and 22.3%, respectively, could be achieved with the implementation of the cost-effective strategy as compared to not having a control strategy

    Spatial and temporal trends of polycyclic aromatic hydrocarbons in sediment cores of Brunei Bay, East Malaysia

    Get PDF
    The spatial and temporal distribution of polycyclic aromatic hydrocarbons (PAHs) in three sediment cores from Brunei Bay, Southern South China Sea was investigated. The total concentrations of 16 priority PAHs (∑PAH16) and their alkyl-substituted derivatives ranged from 10.4 to 376 ng g−1 and 30.7 to 2263 ng g−1, respectively. PAH biomarker diagnostic ratios and principal component analysis (PCA) combined with absolute principal component score (APCS) and multiple linear regression (MLR) were performed to apportion the source contribution. The results revealed mixed inputs of fuel combustion residues and uncombusted petrogenic products. The downcore PAH profile revealed that the highest peaks could be related to past human activities using biofuel and coal during the industrialization/agriculture revolution period. The 1,7/(2,6+1,7)-dimethylphenanthrene ratio also highlighted wood combustion during forest fire outbreaks, which appeared to coincide with the past climate events

    Specificity and disease in the ubiquitin system

    Get PDF
    Post-translational modification (PTM) of proteins by ubiquitination is an essential cellular regulatory process. Such regulation drives the cell cycle and cell division, signalling and secretory pathways, DNA replication and repair processes and protein quality control and degradation pathways. A huge range of ubiquitin signals can be generated depending on the specificity and catalytic activity of the enzymes required for attachment of ubiquitin to a given target. As a consequence of its importance to eukaryotic life, dysfunction in the ubiquitin system leads to many disease states, including cancers and neurodegeneration. This review takes a retrospective look at our progress in understanding the molecular mechanisms that govern the specificity of ubiquitin conjugation
    • …
    corecore